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Computer vision has been significantly impacted by Vision
Transformer (ViT) networks. However, most existing deep
learning-based methods primarily rely on a lot of labeled data
to train rehiable classifiers for accurate prediction. This
requirement might be impractical in the medical field.

Problem definition:

Let D = Dy, D, ..., D, be a collection of n medical datasets, with each dataset D, consisting of pairs (x, y); representing an
Image and its label.

Datasets are divided into meta-test set (D, cia.test) @Nd Meta-train set (D cia-train)

Utilize abundant data in D,....4in tO l€arn better initial weights (Reptile) or develop effective embedding space (ProtoNet &

MatchingNet)
This study explores the application of ViT in few-shot learning Goal: Improve performance on problems Dpnes st With limited data (novel class data)
scenarios for medical image analysis, addressing the Overview of the system pipeline
challenges posed by limited data availability. We evaluate Meta-training stage Meta-testing Stage

various V1T models alongside few-shot learning algorithms,
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» CNNs struggle with learning long-range pixel
relationships due to locality, which ViTs can handle ViT Encoder:
more effectively.
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» Medical Imaging often has limited labeled data, B s
making it difficult to train deep learning models. AP, | —————\
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To our knowledge, VIT architectures have not been used [ ‘

In the field of medical image classification in few-shot
learning scenarios. Therefore, given their success In

other areas of computer vision, it Is important to assess
their performance in this area under various conditions. » Datasets: BreakHis (9109 microscopic images of breast tumor tissues from 82 patients with 8 classes),

\ ) ISIC 2018 (10,015 dermoscopic images of skin lesions across 7 classes), and Pap Smear (917
microscopic images of cervical smears with 7 classes).

‘ » Experimental Settings: Pre-trained models obtained from the timm library.
| » ProtoNet: 20 epochs, 500 episodes per epoch, SGD optimizer, learning rate of 10-5 or 10-6, cosine
]
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/ annealing learning rate schedule.
> Investigate the efficacy of various ViT models for few- » Reptile: SGD optimizer, learning rate of 10-3 for inner optimization, learning rate of 10-1 for outer meta-
shot medical image classification update, 1000 meta-iterations, batch size of 10 tasks, 5 and 50 adaptation steps for each task
> Study how different few-shot learning algorithms » Evaluation metric: Accuracy (%) as evaluation metric. 400 episodes randomly selected from novel
impact the performance of ViT models categories in the test set. Average accuracy rate for image classification.
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